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SUMMARY 

A new boundary element procedure is developed for the solution of the streamfunction-vorticity formulation 
of the Navier-Stokes equations in two dimensions. The differential equations are stated in their transient 
version and then discretized via finite differences with respect to time. In this discretization, the non-linear 
inertial terms are evaluated in a previous time step, thus making the scheme explicit with respect to them. In 
the resulting discretized equations, fundamental solutions that take into account the coupling between the 
equations are developed by treating the non-linear terms as inhomogeneities. The resulting boundary 
integral equations are solved by the regular boundary element method, in which the singular points are 
placed outside the solution domain. 
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INTRODUCTION 

The boundary element method has gained wide acceptance in the treatment of partial differential 
equations. Its main advantage is that it allows one to find a solution of a specific problem only at 
the boundary of the domain, decoupling the boundary solution from the solution at interior 
points. The latter can be found a posteriori by direct integration. Because of this fact, the technique 
leads to a system of equations smaller than that obtained by conventional methods, when 
comparing the same degree of accuracy.’ 

In the field of fluid mechanics, the boundary element method has been recognized as a powerful 
technique for the solution of potential flow  problem^.^-^ Its application to solve viscous flow 
problems has been explored in recent years. Examples of this are the works of Youngren and 
Acrivos’ and Bush and Tanner,6 in which inertial effects were neglected and the velocity-pressure 
formulation of the Navier-Stokes equations was considered. The inclusion of the inertial terms of 
the Navier-Stokes equations complicates the problem considerably. Bush7 treated this problem in 
the velocity-pressure formulation by using a method of direct iteration to deal with the non- 
linearities. 

The solution of the streamfunction-vorticity formulation of the Navier-Stokes equations in 
two dimensions via boundary elements has been performed in a limited number of works. Onishi 
et a1.* and Farooq and Kuwabara’ considered the time-dependent form of these equations. They 
used the fundamental solution of Poisson’s equation to find the boundary integral equation of the 
streamfunction. On the other hand, the boundary integral equation of the vorticity was obtained 
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by using a time-dependent fundamental solution that considered the inertial terms in the vorticity 
equation as point sources. An explicit time-marching procedure was used, so that the non-linear 
terms in the equations added no further complication to the numerical technique. 

Fundamental solutions have been found recently for incompressible viscous steady and 
unsteady flow problems via integral equation formulations with primitive variables.''* ' In a 
previous work" the boundary element method for solving the steady-state Navier-Stokes 
equations in their streamfunction-vorticity formulation was presented. The method proposed 
there is based on the use of a new set of fundamental solutions that provide a complete coupling 
between the streamfunction and vorticity equations, thereby avoiding the usual problems that this 
formulation has in the treatment of boundary conditions in which both the streamfunction and its 
normal derivative are specified, as occurs in no-slip boundary conditions. The non-linear terms 
are considered as inhomogeneities in the development of the boundary integral equations and 
treated by direct iteration based on successive substitutions of newly calculated values. This 
technique becomes unstable for high Reynolds numbers. In this work we propose another set of 
new fundamental solutions starting from the non-steady-state Navier-Stokes equations in the 
streamfunction-vorticity formulation with complete coupling, but the treatment of the non-linear 
terms is done via a time discretization procedure. 

MATHEMATICAL FORMULATION 

The two-dimensional unsteady-state flow of an incompressible Newtonian fluid is governed by the 
Navier-Stokes equations which, when formulated in terms of the streamfunction ($) and the 
vorticity (o), take the following form. 

v 2 *  = -0, (1) 

These equations are stated in dimensionless form. The Reynolds number (Re  = pu,L/,u) is 
expressed in terms of a characteristic length L, with respect to which the two independent co- 
ordinates x and y have been made dimensionless, and a characteristic velocity u o .  Time is made 
dimensionless by using a characteristic time t o  = p L2/,u. 

By using a first-order time discretization for awla t ,  which introduces an error of order At, and 
letting the inertial terms be explicit while keeping the rest of the terms implicit, the differential 
equations (1) and (2) take the form 

v 2 * , =  -0 n. (4) 
In these equations the subscript n denotes the current time level and n - 1 a previous time level, a 
time step At apart. We will consider the non-linear terms in equation (3) as inhomogeneities of the 
problem for the process of finding fundamental solutions. Based on this, equations (3) and (4) are 
reformulated as follows: 

v 2 0 n - f f 2 0 n = f n - l ,  

v2*. + 0, = 0, 
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where 
a2 = I/At, 

We then propose as fundamental solution of equation (5) a function F, that satisfies the following 
differential equation: 

(9) 

where 6 is the Dirac delta function, r is a two-dimensional position vector in the x-y plane and 5 is 
an arbitrary vector locating the point at which the singularity of the delta function is placed. 

The solution of equation (9) is the fundamental solution of the modified Helmholtz equation 
(details are given in the Appendix): 

V* F ,  - a2 F ,  = -6(r-g), 

5 )  = (1/24(CC +In(@)] Io(cfIl r - 511) + Ko(a I I  r-5Il)},  (10) 

where C is Euler’s constant, Ilr- 6 11 is the distance in the x-y plane between the points located by 
the vectors r and 5,  and lo and K ,  are zeroth-order modified Bessel functions of the second kind. 

Now we will seek a fundamental solution of equation (6), F,, that satisfies the following singular 
inhomogeneous problem. 

(1 1) 

This equation can be integrated by formulating it in polar co-ordinates with origin at the point 
located by the vector 6 (see Appendix). The result is 

V2 F ,  + F ,  = -6(r - 5 ) .  

F , k  5 )  = - (1/2ncf2) ( ( I +  a2)  In /I r -  5 / I  + [C + In (@)I 1, (a /I r - 5  I1 1 + K , ( a  I1 f -5  I1 I}. (12) 

The fundamental solutions given by equations (10) and (12) will allow the development of the 
boundary integral form of the differential equations (5) and (6). Multiplying equation (9) by a,, 
equation (5) by F, and subtracting yields 

F,V2m, - m,V2 F, = F,f,- + w,h(r-&). (13) 
This equation can be integrated over the solution domain SZ (Figure 1). Performing this and 

R 

Figure 1. Solution domain 
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applying Green’s theorem leads to 

where the integrations are performed with respect to r and where r is the boundary of Q. The 
parameter a(<) is a geometric factor resulting from the integration of the delta function. It can 
be shown that it takes on the following values, depending on the location of 6. 

In this equation ficc) represents the exterior of the domain, excluding its boundaries, and 8 is the 
angle formed between tangents to the boundary at point 6, approaching it from each side, as 
illustrated in Figure 2. Note that, for points at which the boundary is a differentiable curve, 0 = K. 

Equation (14) will be taken as the boundary integral form of equation (5). To find the boundary 
integral equation corresponding to equation (6), consider first the equation formed by combining 
equations (5 )  and (6), namely 

a2V2$,  + V 2 w ,  =f,- 1. 

V 2 F ,  + u 2 V 2 F ,  = - (1 +a2)6(r-&). 

(16) 

(17) 

Furthermore, considering the combination of equations of (9) and (1 l), we have 

Then equation (16) is multiplied by F, and F, and equation (17) by w,  and $, to obtain the 
following equations: 

u 2 ~ , v 2 $ , , +  F , V ~ W ,  = F , s , - ~ ,  

u 2 ~ , v 2 $ , , +  F , v ~ ~ , =  F,L+ 

Figure 2. Evaluation of 0 
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Now the following combination is performed with the last equations, (18) + a’(19)-(20) 
- a2(21), to obtain, after some simplifications and using equation (13), 

(F,V’I+b,, - $,V’ F,) + a’( F,V2$, - $,V’ F,)+(FeV2m, - w,V2 F,) 

= F,f , - ,+ C(1 + a 2 ) $ ,  + m,,I6(r - 5).  (22) 

Finally, integrating this equation over R and applying Green’s theorem leads to a second 
boundary integral equation. 

The integrodifferential equations (14) and (23) represent a formulation equivalent to the original 
problem (equations (5) and (6)). Providing thatf(r) is a known function, equations (14) and (23) 
have the useful characteristic that, when evaluated at points 6 on the boundary I‘ or in W ,  they 
interrelate the values of the dependent variables and their derivatives on the boundaries, thus 
allowing the evaluation of a boundary solution. 

Equations (14) and (23) can be discretized following the regular boundary element approach.6 
The integrals over in those equations are expressed as the sum of the integrals over a grid of 
linear boundary elements. Posteriorly, the dependent variables (I), and w,) and their normal 
derivatives (a$,/an and aw,/an) are expressed as linear functions within each element. The 
descretized forms of equations (14) and (23) are thus formulated in terms of the nodal values of $,,, 
w,, a$,/an and aw,/an. After substituting the known boundary conditions for the streamfunction 
and vorticity (assumed to be of the Dirichlet or Neumann type), the resulting equations contain 
2N unknowns, where N is the total number of nodes of the boundary element grid. Afterwards, we 
define N singular points, t l ,  located on a vector normal to r at a distance equal to the mean length 
of adjacent elements. This allows us to generate 2N algebraic equations. The result of the process is 
a system of equations that can be expressed in the following way: 

A x = b + q ,  (24) 

1. 
2. 
3. 
4. 

5. 

where A is a 2N x 2N matrix and x is the vector of unknowns, containing 2N elements which are 
the unspecified boundary values of $,, on, a$,/an and dw,/dn. The vector b is formed by the terms 
of the integrals in equations (14) and (23) that can be evaluated from the boundary conditions, and 
q has elements which correspond to the integrals over R in equations (14) and (23). 

Once the geometry of the discretization and the boundary conditions are specified, the matrix A 
and the vector b are completely determined. On the other hand, a knowledge of the solution in the 
interior of the domain is required to evaluate the vector q, sinceh- , (equation (8)) depends on it. 
To find the solution to the problem, the following procedure may be used. 

Start from an initial estimate for q and fix a value for the time step At.  
Form the matrix A and vector b. 
Find the inverse matrix A-’ .  
Calculate x from 

x = A-’(b + q). 
Calculate the solution in the interior of the domain from equations (14) and (23) evaluated at  
interior points. Calculate the new vector q. 
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6. Stop if the maximum absolute deviation of nodal values of streamfunction, vorticity and 
their normal derivatives between the current and the previous time steps is below a specified 
tolerance. Otherwise, return to step 4. 

There are two important features to point out from the solution scheme employed. First, the 
solution of the system of equations has to be performed only once, since the inverse matrix A - '  
can be stored and used subsequently. This can be done because A is only a function of the 
geometry of the discretization. Secondly, in the system of equations (16) there is a complete 
coupling among all the dependent variables. This is the most important characteristic of the 
method developed in this work and what makes it different from conventional finite and boundary 
element algorithms, which in general require a special treatment of boundaries in which there are 
two specifications for the streamfunction and none for the vorticity. 

APPLICATION 

To illustrate the application of the method presented in the preceding section, consider the flow 
inside a square cavity whose upper lid is moving at a constant velocity. The geometry and 
boundary conditions for this problem are shown in Figure 3. The results corresponding to 

1 0  = 0 Avldn = I 

I . 

dvlbn = 0 

= 13 bv/dn = 12 

Figure 3. Flow inside a square cavity 

Figure 4. Streamlines for flow in a square cavity, Re=O 
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Figure 5. Constant-vorticity lines for flow in a square cavity, Re=O 

Figure 6. Streamlines for flow in a square cavity, Re = 100 

Reynolds numbers of 0, 100 and 200 are shown in Figures 4-9. These results were obtained by 
using a grid of 64 boundary nodes and with the fundamental solution corresponding to a = 0, a 
case for which the iterative procedure becomes a direct iteration since the values of the non-linear 
terms in each iteration correspond directly to the evaluation of those terms from the results of the 
previous iteration. 

The results for Re = 0, shown in Figures 4 and 5, did not require iteration because in this case 
f= 0 and therefore q = 0, which turns equation (16) into a linear system. We point out that other 
conventional boundary element algorithms for the streamfunction-vorticity equations require an 
iterative procedure even for Re = 0, since in the application considered the boundary conditions 
are all imposed on the streamfunction. The coupling between the two basic differential equations 
that provides the algorithm developed in this work allows a direct solution of the case Re = 0. This 
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Figure 7. Constant-vorticity lines for flow in a square cavity, Re= 100 

Figure 8. Streamlines for flow in a square cavity, Re=200 

is an important advantage of the method since it can handle virtually all the types of boundary 
conditions encountered in practice. 

The results obtained are similar to those reported by Farooq and Kuwabara’ to the point that 
the contour plots are exactly the same at the scale of the figures. Furthermore, the location of the 
centre of the primary vortex as well as the magnitudes of the streamfunctioa and vorticity agree 
with those reported in the works of Nallasamy and Prasad13 and Gupta and Manohar,14 as 
illustrated in Table 1. 

The algorithm used in this work did not converge for Reynolds numbers larger than 300, even 
using relaxation between iterations. The relaxation scheme employed consisted of modifying the 
values of the boundary unknowns (x) predicted by the iterative procedure by the following 
equation: 

x=/jx‘”+(1-/j) x ( k - 1 1 ,  
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Figure 9. Constant-vorticity lines for flow in a square cavity, Re=200 

Table I. Comparison of results with previous works 
~ ~ ~ ~~~ 

Location of Value of -+ at Value of w at 
vortex centre vortex centre vortex centre 

Re Ref. 14 This work Ref. 14 This work Ref. 14 This work 

0 0.50, 0.75 0.50, 0.75 0.0924.101 0.099 4.9-6.0 4.8 
100 0.37, 0.75 0.38, 0.75 0.0814.100 0.095 6.3-8.6 6.5 

where x(") and x ( ~ - ' )  are the values predicted in iterations k and k - 1 respectively and x is the real 
value of the vector used to evaluate the vector q for the next iteration. The relaxation parameter f i  
was varied between 0 and 1 with no consequence over the convergence limit of Re = 300. 

The limitation of convergence at high Reynolds numbers was expected, since the iterative 
procedure is a direct iteration based on successive substitutions of newly calculated values offand 
this technique has proved to be unstable for high Reynolds numbers in other  algorithm^.'^ 
However, it might be possible that results obtained by using fundamental solutions generated by 
changing the values of the parameter CI converge for larger Reynolds numbers. This aspect of the 
investigation is being explored at the present time. 

Finally, it is important to point out that the technique used in the present work yields high 
accuracy with respect to the size of the grid employed. It has been mentioned that the results 
presented in Figures 4-9 correspond to 64 boundary nodes. However, in terms of the accuracy 
that can be perceived from the plots, the results corresponding to 32 boundary nodes are 
indistinguishable from those presented. Figure 10 shows a comparison of the vorticity values at 
the upper lid obtained by using 32 and 64 boundary nodes. Although there are some differences 
between them, the profiles only differ significantly near the corners, where the vorticity has a 
singularity. The internal solution is not sensitive to those differences up to the third significant 
digit. Since the upper-lid vorticity represents the part of the solution that converges more slowly to 
the exact solution, it can be concluded that 32 boundary nodes are enough to obtain an accurate 
solution. 
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Figure 10. Values of the vorticity at the upper lid, Re=O 

CONCLUSIONS 

The boundary element method is applied to solve the streamfunction-vorticity formulation of the 
Navier-Stokes equations. The procedure developed relies on the use of fundamental solutions 
that take into account the coupling between the differential equations through the vorticity term 
in the streamfunction equation. The non-linear terms are considered as inhomogeneities in the 
development of the boundary integral equations and treated by means of a time discretization 
procedure. The formulation allows one to handle no-slip boundary conditions in a direct manner, 
avoiding iteration to find the vorticity values on no-slip boundaries. The discretization of the 
resulting boundary integral equations can be performed by placing the singular points outside the 
solution domain, as is done in the regular boundary element method. 

APPENDIX 

We present the procedure for the derivation of the fundamental solutions given by equations (10) 
and (12). In general, a fundamental solution of a second-order singular equation can be obtained 
by performing the following steps: 

1. Solve the homogeneous problem, expressing the solution in terms of two integration 
constants. 

2. Force the homogeneous problem solution to satisfy the integral form of the singular 
equation, thus finding one of the integration constants. 

3. Set the value of the second integration constant arbitrarily. 

Fundamental solution of equation (9 )  

By using cylindrical co-ordinates and taking r =  llr-611 we obtain the homogeneous form of 
equation (9), 
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The general solution of this problem is 

F,(r) = A I , ( m )  + BK,(ur). 

On the other hand, the integration of equation (9) over a circle of radius r yields, after applying 
the divergence theorem and remembering that the integral of the Dirac delta function over a 
domain surrounding its singularity is equal to  one, 

2nr--2nu2 F,rdr= -1. 
dFw dr c 

Substituting equation (26) into equation (27) yields B =  1/2n, from which equation (26) becomes 

F,(r)  = Al , (ar)  + (1/2n) Ko(ur). (28) 
This is the most general form of the fundamental solution. The constant A must be specified and it 
can have any arbitrary value. In this work we will choose this constant so that equation (28) 
reduces, as u+O, to the following solution, found in a previous work:12 

F, = -(1/2n) lnr.  (29) 

Using series expansions for the Bessel functions, taking the limit in equation (28) and equating the 
result to equation (29) leads to 

(30) A = (1/2n) [ln (a/2) + C], 

where C is Euler’s constant. The resulting fundamental solution is given by equation (10). 

Fundamental solution of equation (11) 

homogeneous form of equation ( 1  l), 
By using cylindrical co-ordinates, taking r =  Ilr=c11 and using equation (28) we obtain the 

The general solution of this problem is 

A 1 
u2 2na2 

F+(ur )=  ---I ( u r ) - - K , ( u r ) +  E In r + D, 

where E and D are the constants of integration. 
Integrating equation (1 1) over a circle of radius r yields 

2nrdF, /dr+2n 

Substituting equations (28) and (32) into equation (33) leads to 

1 l + a 2  
2n a2 . 

E=---  

(33) 

(34) 

With the use of this relation, equation (32) represents the most general fundamental solution of the 
problem. The constant D is arbitrarily set equal to zero and thus equation (12) is obtained. With 
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this choice, as a-0, it can be shown that equation (32) becomes 

which was derived in a previous work.’* 

1. 

2. 
3. 

4. 
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6. 

7. 

8. 

9. 
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